Overconvergent Hilbert modular forms via perfectoid modular varieties

نویسندگان

چکیده

We give a new construction of p-adic overconvergent Hilbert modular forms by using Scholze’s perfectoid Shimura varieties at infinite level and the Hodge–Tate period map. The definition is analytic, closely resembling that complex as holomorphic functions satisfying transformation property under congruence subgroups. As special case, we first revisit case elliptic forms, extending recent work Chojecki, Hansen Johansson. then construct sheaves geometric well subsheaves integral vary our definitions in families. show resulting spaces are isomorphic Hecke modules to earlier constructions Andreatta, Iovita Pilloni. Finally, direct arithmetic compare this via descent from case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearly Overconvergent Modular Forms

We introduce and study finite slope nearly overconvergent (elliptic) modular forms. We give an application of this notion to the construction of the RankinSelberg p-adic L-function on the product of two eigencurves.

متن کامل

Networks via Hilbert Modular Forms

Ramanujan graphs, introduced by Lubotzky, Phillips and Sarnak, allow the design of efficient communication networks. In joint work with B. Jordan we gave a higher-dimensional generalization. Here we explain how one could use this generalization to construct efficient communication networks which allow for a number of verification protocols and for the distribution of information along several c...

متن کامل

Classical and overconvergent modular forms

The purpose of this article is to use rigid analysis to clarify the relation between classical modular forms and Katz’s overconvergent forms. In particular, we prove a conjecture of F. Gouvêa [G, Conj. 3] which asserts that every overconvergent p-adic modular form of sufficiently small slope is classical. More precisely, let p > 3 be a prime, K a complete subfield of Cp, N be a positive integer...

متن کامل

Slopes of overconvergent 2-adic modular forms

We explicitly compute all the slopes of the Hecke operator U2 acting on overconvergent 2-adic level 1 cusp forms of weight 0: the nth slope is 1 + 2v((3n)!/n!), where v denotes the 2-adic valuation. We formulate an explicit conjecture about what these slopes should be for weight k forms.

متن کامل

Slopes of 3-adic overconvergent modular forms

If r = 12 and (uij) is the matrix of the U operator in the above basis, then the numbers uij satisfy a recurrence formula: there is a p × p matrix M such that uij = ∑p r,s=1Mrsui−r,j−s. Furthermore, M is skew-upper-triangular and constant on off diagonals; and the coefficients uij satisfy uij = jiuji. The case p = 2 is extensively studied in [BC05]. Here the recurrence relation is simple enough...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Fourier

سال: 2023

ISSN: ['0373-0956', '1777-5310']

DOI: https://doi.org/10.5802/aif.3560